Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Space Res (Amst) ; 39: 59-66, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945090

RESUMO

The Hybrid Electronic Radiation Assessor (HERA) system is a Timepix-based ionizing radiation detector built for NASA Exploration-class crewed missions. The HERA performs data analysis on-system and generates telemetry messages for ingestion, display, and relay by the spacecraft. Several iterations of the hardware have been flown aboard the International Space Station as payloads to test system operation and gain experience with the hardware in the space radiation environment. The HERA system and its payload operations are described, and data collected by the various HERA systems are presented.


Assuntos
Voo Espacial , Astronave , Radiação Ionizante
2.
Life Sci Space Res (Amst) ; 39: 95-105, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37945094

RESUMO

Monitoring space radiation is of vital importance for risk reduction strategies in human space exploration. Radiation protection programs on Earth and in space rely on personal and area radiation monitoring instruments. Crew worn radiation detectors are crucial for successful crew radiation protection programs since they measure what each crewmember experiences in different shielding configurations within the space habitable volume. The Space Radiation Analysis Group at NASA Johnson Space Center investigated several compact, low power, real-time instruments for personal dosimetry. Following these feasibility studies, the Crew Active Dosimeter (CAD) has been chosen as a replacement for the legacy crew passive radiation detectors. The CAD device, based on direct ion storage technology, was developed by Mirion Dosimetry Services to meet the specified NASA design requirements for the International Space Station (ISS) and Artemis programs. After a successful Technology demonstration on ISS, the CAD has been implemented for ISS Crew operations since 2020. The current paper provides an overview of the CAD development, ISS results and comparison with the ISS Radiation Assessment Detector (RAD) and the Radiation Environment Monitor 2 (REM2) instruments.


Assuntos
Radiação Cósmica , Monitoramento de Radiação , Voo Espacial , Humanos , Astronave , Dosímetros de Radiação , Radiometria , Monitoramento de Radiação/métodos , Doses de Radiação
3.
Life Sci Space Res (Amst) ; 14: 18-28, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28887939

RESUMO

The radiation environment at the Martian surface is, apart from occasional solar energetic particle events, dominated by galactic cosmic radiation, secondary particles produced in their interaction with the Martian atmosphere and albedo particles from the Martian regolith. The highly energetic primary cosmic radiation consists mainly of fully ionized nuclei creating a complex radiation field at the Martian surface. This complex field, its formation and its potential health risk posed to astronauts on future manned missions to Mars can only be fully understood using a combination of measurements and model calculations. In this work the outcome of a workshop held in June 2016 in Boulder, CO, USA is presented: experimental results from the Radiation Assessment Detector of the Mars Science Laboratory are compared to model results from GEANT4, HETC-HEDS, HZETRN, MCNP6, and PHITS. Charged and neutral particle spectra and dose rates measured between 15 November 2015 and 15 January 2016 and model results calculated for this time period are investigated.


Assuntos
Radiação Cósmica , Meio Ambiente Extraterreno , Marte , Modelos Teóricos , Exposição à Radiação/análise , Monitoramento de Radiação/métodos , Astronautas , Raios gama , Humanos , Nêutrons , Proteção Radiológica
4.
Life Sci Space Res (Amst) ; 14: 29-35, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28887940

RESUMO

The Mars Science Laboratory Radiation Assessment Detector (MSLRAD) is providing continuous measurements of dose, dose equivalent, and particle flux on the surface of Mars. These measurements have been highly useful in validating environmental and radiation transport models that will be heavily relied upon for future deep space missions. In this work, the HZETRN code is utilized to estimate radiation quantities of interest on the Martian surface. A description of the modeling approach used with HZETRN is given along with the various input models and parameters used to define the galactic cosmic ray (GCR) environment and Martian geometry. Sensitivity tests are performed to gauge the impact of varying several input factors on quantities being compared to MSLRAD data. Results from these tests provide context for inter-code comparisons presented in a companion paper within this issue. It is found that details of the regolith and atmospheric composition have a minimal impact on surface flux, dose, and dose equivalent. Details of the density variation within the atmosphere and uncertainties associated with specifying the vertical atmospheric thickness are also found to have minimal impact. Two widely used GCR models are used as input into HZETRN and it is found that the associated surface quantities are within several percent of each other.


Assuntos
Radiação Cósmica , Exposição Ambiental/análise , Meio Ambiente Extraterreno , Marte , Modelos Teóricos , Monitoramento de Radiação/métodos , Proteção Radiológica , Humanos
5.
Life Sci Space Res (Amst) ; 12: 24-31, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28212705

RESUMO

Although charged particles in space have been detected with radiation detectors on board spacecraft since the discovery of the Van Allen Belts, reports on the effects of direct exposure to space radiation in biological systems have been limited. Measurement of biological effects of space radiation is challenging due to the low dose and low dose rate nature of the radiation environment, and due to the difficulty in distinguishing the radiation effects from microgravity and other space environmental factors. In astronauts, only a few changes, such as increased chromosome aberrations in their lymphocytes and early onset of cataracts, are attributed primarily to their exposure to space radiation. In this study, cultured human fibroblasts were flown on the International Space Station (ISS). Cells were kept at 37°C in space for 14 days before being fixed for analysis of DNA damage with the γ-H2AX assay. The 3-dimensional γ-H2AX foci were captured with a laser confocal microscope. Quantitative analysis revealed several foci that were larger and displayed a track pattern only in the Day 14 flight samples. To confirm that the foci data from the flight study was actually induced from space radiation exposure, cultured human fibroblasts were exposed to low dose rate γ rays at 37°C. Cells exposed to chronic γ rays showed similar foci size distribution in comparison to the non-exposed controls. The cells were also exposed to low- and high-LET protons, and high-LET Fe ions on the ground. Our results suggest that in G1 human fibroblasts under the normal culture condition, only a small fraction of large size foci can be attributed to high-LET radiation in space.


Assuntos
Astronautas , Dano ao DNA/genética , Fibroblastos/patologia , Raios gama/efeitos adversos , Células Cultivadas , Dano ao DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Histonas/metabolismo , Humanos , Transferência Linear de Energia , Astronave
6.
Life Sci Space Res (Amst) ; 6: 69-78, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26256630

RESUMO

Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented.


Assuntos
Radiação Cósmica , Monitoramento de Radiação/instrumentação , Monitoramento de Radiação/métodos , Radiometria/métodos , Dosimetria Termoluminescente/métodos , Desenho de Equipamento , Doses de Radiação , Voo Espacial , Astronave
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...